
I Reconciling Real-Time and "Fair" Scheduling

N TR88-024

(V) May 19880CN

I Contract N00014-86-K-0680

Bill 0. GallmeisterD.TIC
(Z7*- ELECTE 7,.

JAN 2 6 109

D

The University of North Carolina at Chapel Hill
Department of Computer Science
CB#3175, Sitterson Hall
Chapel Hill, NC 27599-3175

DIhkih butiw n UuL 'id

Copyright @1988 Bill 0. Gallmeister

88 11 18 179



UNC is an Equal Opportunity/Affirmative Action Institution.



Reconciling Real-Time and "Fair" Scheduling

Bill 0. Gallmeister

CB # 3175, Department of Computer Science 1

University of North Carolina
Chapel Hill, NC 27599-3175

May 6, 1988

'This Research was supported by Office of Naval Research Contract N00014-86-K-0680.



Motivation

Multiprogramming operating systems which support both real-time and non-real-time pro-
cesses are called "soft-real-time" systems. In such systems, process scheduling is problematic,
because there are two quaitatively different classes of processes requiring scheduling. If the
scheduling algorithm is designed to favor one class of processes, it will probably not treat the
other class of processes fairly. For instance, priority-based schedulers are considered fair to
non-real-time processes, but lead to unreliable real-time systems[3,2]. Conversely, deadline-
based schedulers suffice to run real-time processes but will starve non-real-time processes,
which have no deadline.

The common conception is that real-time responsiveness and fair multiprogramming are
mutually exclusive. I hold that this concept is wrong, because our concept of "fairness" is
wrong. I propose a unifying model of processes under which so-called "real-time" and "non-
real-time" processes are merely different instances of the same sort of object, with different
attribute values. Under this unifying scheme, all processes can be treated fairly while still
preserving real-time responsiveness.

Who Needs It? Some applications do not require such a unified model of processes. For
instance, hard-real-time tasks - tasks which must meet rigid time constraints - typically
are not concerned with the fair treatment of processes, because the processes are carefully
scheduled, as a whole, to meet the overall time constraints of the system. Fairness is not of
concern because the subprocesses making up the task are not competing for the processor;
instead, they are cooperating. To treat one part of that entity "fairly", at the expense of the
rest of the entity, would make no sense. On the other hand, in soft-real-time systems, where
real-time and non-real-time tasks compete for the processor, both fairness and responsiveness
are of concern. In these machines, time-constrained tasks must run along with non-time-
constrained tasks.



Systems and Schedulers

In this section, two different sorts of multiprogrammed systems - real-time and non-real-
time systems - are discussed from the standpoint of their schedulers. Due to differences in
objectives, the schedulers for real-time systems are completely different from the schedulers
for non-real-time systems; therein lies the conflict between fairness and real-time.

1.1 Criteria for Judging Scheduling Algorithms

There are many different scheduling algorithms to meet many different requirements of the
system being built. Criteria for selecting a scheduling algorithm include

* guaranteed response times

* behavior under overload

e fairness

Guaranteeing response time means that the scheduling algorithm assures that a process
can be run within some specified time after it comes ready (the process deadline). This
characteristic is necessary for a scheduling algorithm which can support real-time systems.

Behavior under overload refers to the algorithm's performance when the processor is
overloaded - that is, too much to do in too short a time. Notice that this criterion is only
important in the case of real-time systems, as well - non-real-time schedulers have no concept
of deadlines, and so the idea of "overload" makes no sense in that context.

Fairness is the most widely-examined quality of non-real-time schedulers. "Fairness" is
usually taken to mean that "all processes are treated the same, and no process can suffer
indefinite postponement"[1]. As stated above, real-time schedulers are not usually concerned
with being fair.

2



Reconciling ReaJ-Time and "Fair" Scheduling - Gallmeister 3

1.2 Non-Real-Time Systems

When a multiprogramming system has no obligation to meet real-time constraints, fairness
becomes the primary criterion for judging the quality of the scheduler. If the scheduler treats
every process equally, and assures that every process will run eventually, then that scheduler
is called a fair scheduler.

Central to the notion of fairness is the idea that processes are competing for the computing
resource. As we will see below, there are systems where processes do not compete for the
processor, but instead cooperate using statically-determined rules. Such systems are not of
concern to us now.

Priority-Based Schedulers. The predominant way of producing a fair scheduler is to
attach priorities and quanta to each process. Processes are run in order of highest priority
first, and given the processor for an amount of time not exceeding their quanta. Based
on process performance (I/O- vs. CPU-boundedness), both priority and quantum can be
adjusted dynamically.

Note that even under priority-based schemes, it can be argued that the scheduling algo-
rithm is not fair, since higher priority processes are run sooner than lower-priority processes.
This example points out the error in the definition of "fair": a fair scheduler does not treat
every process identically. Instead, a fair scheduler only examines each process identically,
and chooses which process to run by decidedly unfair means.

Why Do We Use an Unfair Scheduler? In fact, some systems actually do schedule
all processes identically: Processes are placed on a queue in some random order, and each
process is taken off the queue, run for a quantum, and reinserted at the end of the queue.
This scheduler is fair, and is also simple to implement and understand. These are powerful
advantages. However, treating all processes identically is not "the right thing" to do in most
multiprogrammed systems, because certain processes are more important than others. For
instance, in a typical UNIXI system, the "update" process, which ensures that filesystems
remain consistent, is more important than most other processes, since without it, the system
will probably crash due to filesystem damage. The ideal of treating all processes identically
is a conceptually clean thought, but not a terribly useful strategy in real life.

1.3 Real-Time Systems

Real-time systems are programs which must be run within time constraints which are part
of their specification. In such systems, timely execution of code is an essential component of
the system - if a process completes late (or early, in some cases), then its computation will
have reduced or no benefit, and may even be detrimental to the system.

1 UNIX is a trademark of AT&T Bel Laboratoies.



Reconciling Real-Time and "Fair" Scheduling - Gallmeister 4

Real-time systems can be classified by the stringency of their time requirements into
hard- and soft-real-time systems.

" Hard (dedicated) Pteal-Time Systems:

In "hard-real-time" systems, timing constraints exist throughout all aspects of the
system - every process has some time constraint[4]. In such systems, processes which
do not complete by the proper time have zero value. It is the hard-real-time scheduler's
task to ensure that all processes in the system do complete by their deadlines. In such
systems, timely operation is often needed to protect property or lives, and so the
proper execution of the system is a "hard" requirement. Such systems are usually run
on dedicated machines using statically-determined schedulers built at programming or
compile time.

Fairness in this context has no meaning for an individual process, as the processes are
not in competition. There is only one task, composed, perhaps, of multiple processes,
and it has complete use of the entire machine. The component processes cooperate for
the processor rather than competing.

" Soft (non-dedicated) Real-Time Systems:

Soft-real-time systems are those which run on non-dedicated, multiprogrammed ma-
chines. Parts of the system may not have deadlines, but should be run simply "as soon
as possible". These other tasks are competing with the real-time task for machine
resources (i.e. cpu cycles). In such systems, a central scheduler decides which task
will run when. Since control of the machine resource is controlled from outside the
real-time task, guaranteeing hard-real-time responsiveness is impossible in all but the
most lightly-loaded machines. For this reason, hard-real-time tasks should not run on
non-dedicated systems. This paper discusses scheduling for soft real-time systems only.

1.3.1 Deadline-Based Schedulers

To meet time requirements of real-time processes, a deadline scheduler or a variant of a
deadline scheduler can be used. Like priority-based schedulers, deadline schedulers take
one process at a time from a queue, run it for some quantum, and then reinsert it to the
queue. However, in the case of the deadline scheduler the queue is sorted in increasing
order of deadline; the processes with the closest deadlines are at the head of the queue
and those with distant deadlines are at the rear of the queue. A variant is the slack-time
scheduler, where the queue is sorted in increasing order of slack time. A process's slack time
is the amount of time before it absolutely must run in order to meet its deadline (given by
(deadline - quantum - currenttime); see figure 1).



Reconciling Real-Time and "Fair" Scheduling - Gallmeister 5

slack time deadline - quantum

current time deadline

Figure 1. Definition of Slack Time.

1.4 The Conflict Between "Real-Time" and "Fair"

Because of the differences in their implementations and objectives, schedulers for hard-real-

time systems are quite different from schedulers for non-real-time systems. Schedulers for
soft-real-time systems fall in between the two extremes.

Typical real-time schedulers are evaluated with respect to overload behavior and whether

deadline scheduling can be guaranteed, rather than with respect to fairness. In contrast, non-
real-time schedulers do not attempt to provide any sort of deadline service, but do aim to
provide "fair" scheduling behavior. Unfortunately, the intermediary soft-real-time schedulers
must be evaluated with respect to both sets of desiderata, and on one count or another, they

usually fail.

For instance, when typical UNIX systems are converted to support soft-real-time function-
ality, they usually do so by providing an elevated range of "real-time priorities". Essentially,
real-time processes are given priority higher than all other processes. While this may help
to guarantee response times (and guaranteeing response times is still a chancy business left
to the programmer), it has the unwelcome side effect of being unfair to all other processes.

Such failures to satisfy both fairness and response time objectives has led many to assume
that fairness and real-time responsiveness are mutually exclusive goals.

1.5 A Unified Model of Processes

Real-time processes have been modeled before as having value functions which vary with
time, and using such models has led to better scheduling performance under a variety of
conditions[3]. If we wish to extend such a model to include non-real-time processes, we can
consider them to be real-time processes with no deadlines. They, too, can be assigned values
that vary with time. Exactly how such a function should behave is a question which has
no exact answer. Each person probably has a different idea of how the value of a process
varies with time. The particular function used corresponds to one of many different sorts of

processes.



Reconciling Real-Time and "Fair" Scheduling - Gallmeister 6

1.5.1 Non-Real-Time Process Values

Under priority-based schemes, a process's value is modeled as a constant value, possibly

modified based on process behavior and time spent waiting.

When we consider such processes, though, we don't think of their values as being constant.

We would rather have the process run quickly; therefore, the process's value should be higher

when it is first submitted to the system, dropping over time to some steady-state value (if

the process value continues to drop, eventually it will have no value; this can lead to process

starvation). Again, this basic scheme can be augmented by perks and penalties for process

behavior and waiting time.

Under the unified scheme, non-real-time process values can be represented by a tuple

(IV,, FV, FBI.). When first readied, the non-real-time process has value IV,.. The value

changes linearly with time to FV, which value it achieves at time FB,. The value remains

constant thereafter. Changes to the value may be made based upon process waiting time

and behavior.

IVn

FVn

FBn

Range of Non-Real-Time Values. Non-real-time process values must lie in the range

[O..NRVMAX].

NRVMAX

0 Prio rity7



Reconciling Real-Time and "Fair" Scheduling - Gallmeister 7

1.5.2 Real-Time Process Values

In deadline-based schedulers, a real-time process's value is represented by its deadline, and
looks something like a step function.

Deadline

In other real-time systems, processes may be constrained to run within a time window
rather than just by a certain time:

Early Late

Deadline Deadline

Under the unified scheme, real-time process values are represented by a tuple (IV,, PV,, FV,, PB,, PEr).
When first readied, the process has value IV,. At time PB,, the process value rises to PV,.
At time PE, the value drops down to value FV,.

PVr

IVr
FVr

PBr PEr



- I

Reconciling Real-Time and "Fair" Scheduling - Gallmeister 8

Range of Real-Time Values. Real-time process initial and final values must lie in the
range [O..NRVMAX]. Real-time process peak values must lie on the range [O..RVMAX],
where RVMAX > NRVMAX.

RVMAX------*

NRVMAX

0 Priority

1.6 Advantages of the Unified Process Model

The unified process model allows us to represent a large number of different process value
profiles. For instance, a non-real-time process can start out at a high value and drop to a
lower one, or it can rise to a higher value over time. It can remain at a constant value for
all time.

The flexibility in representing real-time processes is more pronounced. We can represent
processes with single deadlines by setting PBr and FV to zero.

PVr

FVr-

PBr PEr

We can represent processes that must be run within a time window by making PB,
nonzero and FV,. and IV,. zero.

PVr

IVr=FVr

PBr PEr



Reconciling Real-Time and "Fair" Scheduling - Gallmeister 9

We can represent processes that should be run within a window but which can be run
before the window by allowing IV,- to be nonzero.

PVr

IVr
FVr

PBr PEr

By setting FV,. to a nonzero value, we can specify a process which should run within a
window but can run after the window.

PVr

FVr
IVr

PBr PEr

1.7 Fair Real-Time Scheduling in the Unified Process
Model

Fair real-time scheduling can be achieved in this unified process model by simply running,
at any given time, the process with the greatest value.

Real-Time Scheduling is Performed. Because real-time processes have peak values
which can be greater than any non-real-time value, we are assured that real-time processes
will be run within their windows unless there is an overload condition.

Fairness is Preserved. Because real-time processes have values outside their windows
which are no greater than those of non-real-time processes, we will possibly run several non-
real-time processes in the time interval before a real-time process assumes its peak value.



Reconciling Real-Time and "Fair" Scheduling - Gallmeister 10

Note that processes are not examined exactly equally - the class of real-time processes
is treated differently than the class of non-real-time processes. This is a result of the fact
that the two classes of processes have different characteristics and requirements. It is the
duty of the scheduling algorithm to ensure that the processes are all treated "separately but
equally."

The performance bottleneck of the scheduling algorithm is in the decision process. Some
clever data structures can be used to greatly speed the determination of "most valuable"
process at any given time. First, we split processes into real-time and non-real-time processes;
each set is stored on a separate priority queue which can be sorted especially for that class
of processes. Efficient search and insertion in these priority queues then becomes the central
problem, but efficient priority queues have been well-researched.

This general scheme is similar to [2]. In fact, a fair real-time scheduler can be built as an
extension of the scheduler mentioned in that work2 . The major drawback of such a system
is the extensive scheduling overhead incurred due to the finer granularity of scheduling and
the more complex model being used. The scheduler proposed herein is of a much coarser
grain, and therefore the overhead involved should be much less.

The scheduler tends to schedule non-real-time tasks whenever it can, behaving in a "just-
in-time" manner. This is in contrast to typical soft-real-time schedulers, which run real-time
processes as soon as possible because of the elevated priorities these processes always run at.
This scheduler will tend to schedule processes more tightly near their deadlines.

1.8 Problems With Scheduling Unified Processes

This complicated model of processes allows us to solve the problem of combining responsive-
ness and fairness. Nothing is free, though, and this system has drawbacks of its own. Most
importantly, the more complex process value model makes for more complicated scheduling
algorithms. Simplicity is lost in moving to this more realistic model. Along with the loss of
simplicity we will suffer a gain in the amount of data and code required, and an attendant
loss in speed. The exact tradeoffs involved will be more clear when the system is actually
implemented.

Avoiding Starvation In order to avoid starvation of non-real-time processes, we need
some scheme for ensuring the eventual running of any process. In priority-based schedulers,
this is done by increasing a process's priority as time goes by, under the assumption that it
will eventually be the highest priority process. However, the highest value a non-real-time
process may assume is still less than the value a real-time process may have. If there is
always some real-time process with a value in the range [NRVMAX..RVMAX], then non-
real-time processes can be starved. Note, though, that this is an overload condition; there
is not enough processing bandwidth to support all the processes.

'Ths is ome of those times when you get scooped - almost.



Reconciling Real-Time and "Fair" Scheduling - Gallmeister 11

"Just-ln-Tine" Has Its Own Problems. Just-in-time scheduling has problems all its
own, although it has been used to great advantage in manufacturing and shipping appli-
cations worldwide. The largest potential disadvantage is that, if a number of high-value
real-time tasks with close deadlines enter the scheduler just before a real-time task is due
to run, they may produce a transient overload which will cause the real-time process to
miss its deadline. This is a problem endemic to this scheduler because it delays running
real-time processes until the last minute. However, by stretching out the peak period of time
[PB,..PE ], each real-time task can specify some slack to account for system factors. The
real-time application development system should support dynamic, run-time value function
modifications to allow this sort of fine.tuning.



Summary

Soft-Real-Time systems require both real-time and non-real-time processes be scheduled.
Scheduling in these systems is difficult due to qualitatively different requirements of the
two classes of processes; schedulers which treat one class reasonably will usually do so at
the expense of the other class. A unified model of processes, in which each process has an
explicit value function which varies with time, allows us to construct a scheduler which can
provide real-time scheduling and fair non-real-time scheduling at the same time.

12



Bibliography

[1] Harvey M. Deitel. An Introduction to Operating Systems. Addison-Wesley Publishing
Company, Reading, Massachusetts, 1984.

[2) Scott Guthery. Self-Timing Programs and the Quantum Scheduler. Real- Time Systems
Newsletter, 4(3):3-17, Spring 1988.

[3] E. Douglas Jensen, C. Douglass Locke, and Hideyuki Tokuda. A Time-Driven Scheduling
Model for Real-Time Operating Systems. In Real- Time Systems Symposium, pages 112-
122, December 1985.

[4] Aloysius K. Mok. The Design of Real-Time Programming Systems Based on Process
Models. In Real-Time Systems Symposium, pages 5-17, December 1984.

13


